

Mekong Energy March 10 2014 SDT Ultrasound Solutions

1

Definition

- Audible sound (things we can hear)
 - -20Hz \rightarrow 20,000Hz (definition)
 - -2,000Hz \rightarrow 5,000Hz (optimal)
 - Below 17,000Hz (reality)
- Ultrasound (things we can't hear)
 - 20,000Hz and above (definition)

Ultrasound High frequency Short wavelength Lower amplitude Directional Quickly attenuated Ultrasound Sound Low frequency Long wavelength Powerful amplitude Multi directional Transports well

Airborne Detection

Structure Borne Detection

Why is Ultrasound Inspection Effective?

- Fault conditions have US frequencies 1st
- Leaks overwhelmed by plant noise
- Useful during peak times
- Characteristics are maintained
- Directionality hastens detection
- Trendable and non trendable defects
- Time and Spectrum analysis
- Simple or Complex analysis
- Integrate to provide 2nd opinion

Loose part monitoring

- Areas to cover:
 - High voltage
 - Corona, Tracking & Arcing
 - Low voltage
 - Tracking & Arcing

- RMS value is 20dBμV
- Peak is 40dBμV
- Crest Factor is expressed in linear numbers
- $40dB\mu V = 100\mu V$, $20dB\mu V = 10\mu V$
 - Crest Factor is 100/10= 10

59

Condition indicators in UAS software: Simplicity for those who want Elaborate for those who need

- Adds one extra tool to the powerful Ultrasound
- Means that users can make diagnosis that bit easier
 - Don't need to go back to office to change tools
 - Don't need to ask somebody else to do it

- Velocity in ips or mm/s 10-1,000Hz
- Acceleration in g 10-10,000Hz
- RMS and Peak calculated

100 mV / g = Max 10g

- Dynamic measurement (Time) of both now possible with the Raw option instead of Ht.
- All options controlled inside Software Options
- Supports 100mV/g ONLY

Rolling Element Bearings

- (1) Inner Ring the smaller of the two bearing rings with a groove on its **outside** diameter to form a path for the balls.
- (2) Outer Ring the larger of the two rings. It has a groove on its *inside* diameter to form a pathway for the balls.
- (3) The Balls- these are the rolling elements that separate the inner and outer ring and allow the bearing to rotate with minimal friction.
- (4) The Cage the purpose of the cage is to separate the balls, maintaining an even and consistent spacing, to accurately guide the balls in the paths, or *raceways*, during rotation, and to prevent the balls from falling out.

"When lubricating a bearing, how do you know you have enough grease in the bearing"?

"Right when you see the grease starts to appear outside the bearing."

- Really??
- Lots of areas where you can work predictively using ultrasound
 - Steam leaks
 - Steam trap testing
 - Valve inspection
 - Tube leaks and shell inspection

