





## Case Study at DCAP, Suvarnabhumi Airport



Gas Turbine Generator









The older system at their generator non-drive side





Velocity Signal Conditioner model 5544 Seismic Velocity Sensor model 5485C





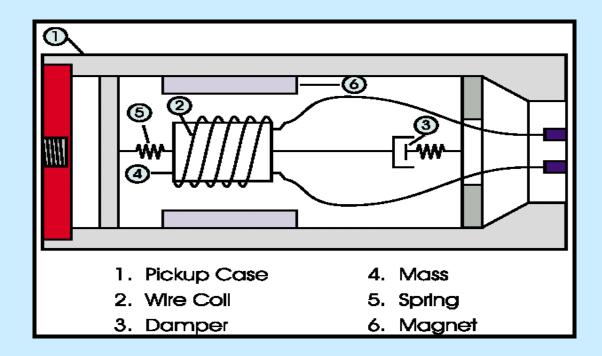


## **Seismic Velocity**

•More heavy, too difficult to install and calibrate

·Less sturdy due to its components

•Can be induced due to its wire coil inside by near-by Walky-Talky Radio Frequency








## **Seismic Velocity**

Velocity = The Displacement Per Time, Normal Output is 100 mV/inch/sec, Pk









## After replacement with our system



Vibration Monitor: Sensonics model DN2601 Accelerometer Sensor: Wilcoxon model 787A



No more Radio Frequency Interference!

