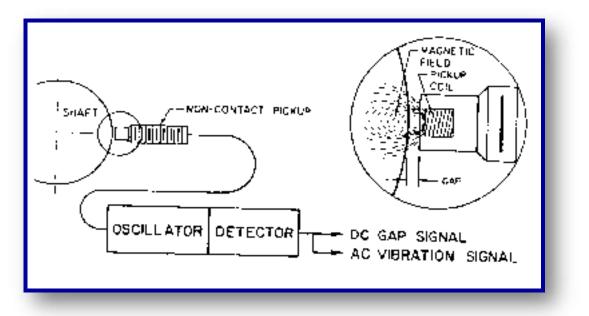
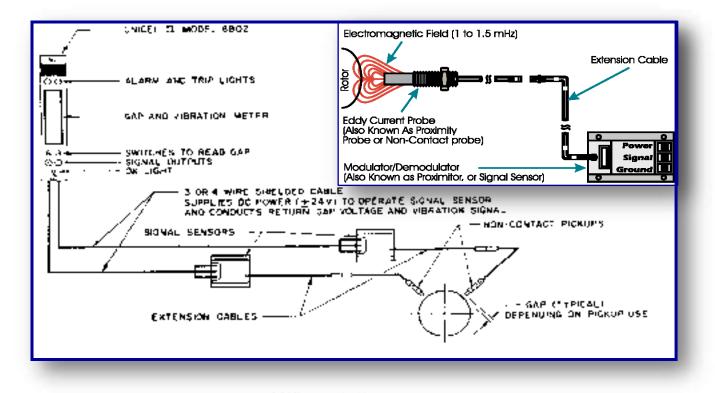


Noncontact Pickup Probe (NCPU) **Proximity Probe** Eddy Current Probe Vibration measurement on rotating parts





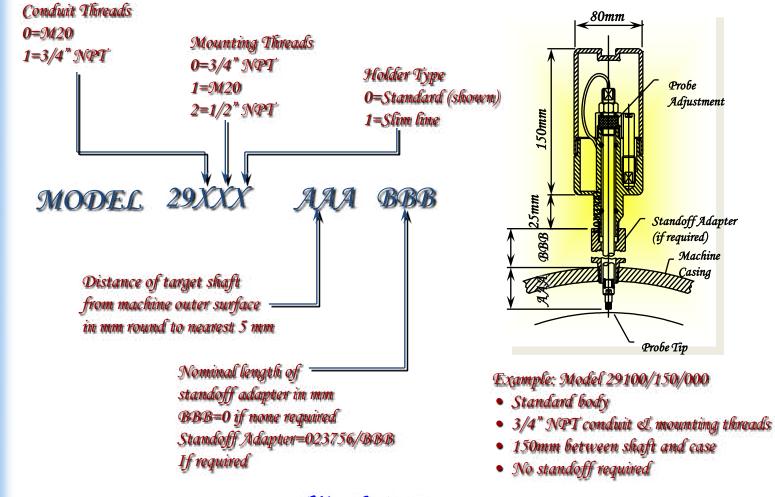
<u>NCPU (Non Contact Pickup Unit)</u> <u>Eddy Current Probe or Proximity Probe</u>

Displacement = The Distance the machine moved <u>Normal Output is 200 mV/mil, Pk-Pk</u>

Monitoring the bearing of Turbine in sequent, Compressor, Gearbox, Pump with Journal/Plane Bearings to analyze Shaft Roundness, Shaft Run-Out, Unbalance, Misalignment, Shaft Centerline, Rubbing, Looseness and etc.

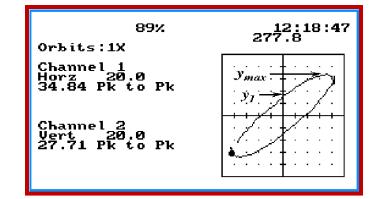
Our Manufacturer is the former BN OEM

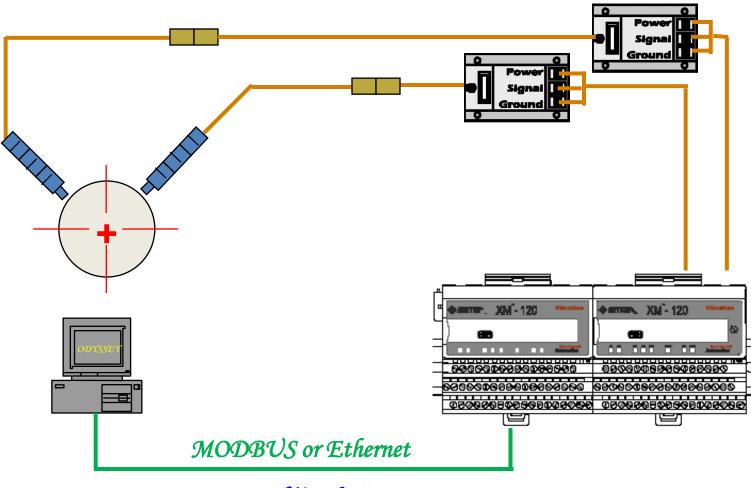
<u>CML</u> is the manufacturer for both ENTEK and Bently Nevada model 7200 series, so if you need any spare parts for BN, you can choose the same model from ENTEK which is 30-40% cheaper.

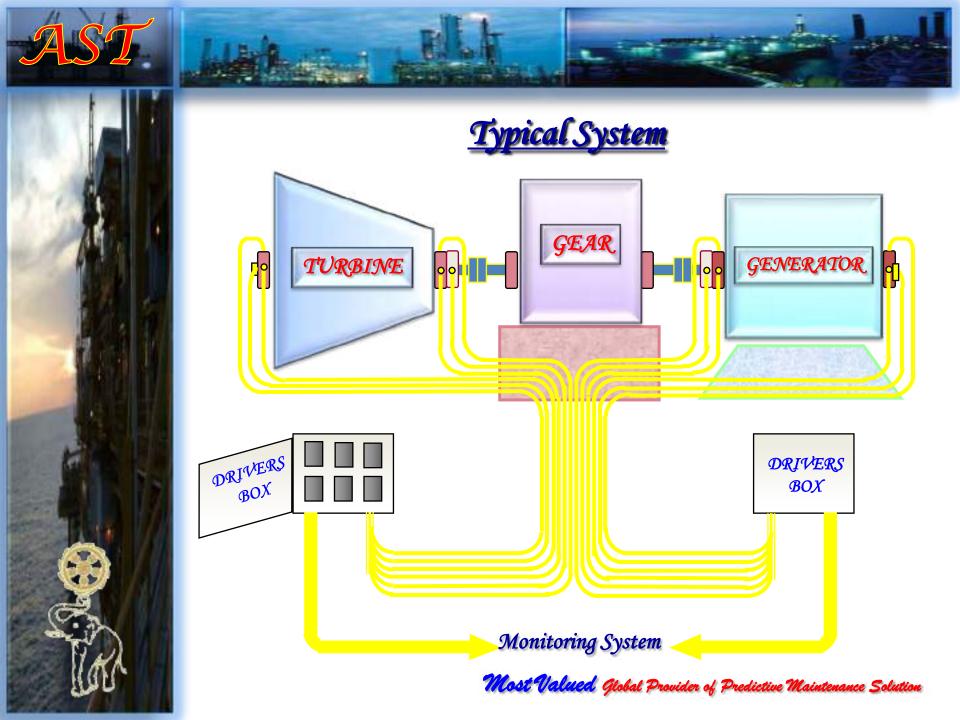


Automatical and a second second

Probe Holder




Unit of Relative Vibration


Display in μM , 1/1000 mm. Or in Mils , 1/1000 inch. Analyze in ORBIT or Phase analysis as Nyquist/Polar Or Bode Plot.

ľ		
E		
	KINGY	¥)

Example of Certification of Calibration

Jak Pa	Haidada	i Ben	Fee: 14,0002	Name Terr	e Strie	
tene .	120.00	CENTRE STATE LOT			SIRMA	149411
Same and	BODRS. TAGINA	372	TU		0.004	-
Drawn .	HOURS	10				2
Tarter Minute	TAG No.	HERE'S PARAMETER	UI DAT	17. J		-
Stand characterists	1.1.1	ristant				
the same second states and		· · · · · · · · · · · · · · · · · · ·			# 1.	
New go more added	210. interact 700 pres	to during the latest	faur alter	No Africal	~	

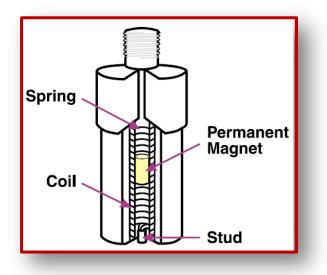
MODD. 175 Disc. 2018a	Security 9000. 175 176 170 <th1< th=""><th>And a state</th><th>- 1204092</th><th>DOEL E2108 TEST</th><th></th><th>11</th></th1<>	And a state	- 1204092	DOEL E2108 TEST		11
MODI Totality Data 6 can Totality Data 6 can Totality <thdata 6="" can<br="">Totality Data 6 can Totality Data 6 can Totality</thdata>	MODO Exame Bits Bits <t< th=""><th>Sear-</th><th>9000. <u>105</u> 160.96 9000 205</th><th></th><th>0.99</th><th></th></t<>	Sear-	9000. <u>105</u> 160.96 9000 205		0.99	
Dependence of the second secon	Start characterization (a) Start (b) 1000000000000000000000000000000000000	teres :	Wobb totale 6	1001		10186. <u>50/4114</u>
ump 0.0000 0.0000 0.0000 ump <td>unit Outside HET Date 10 M.111 M.101 M.101 10 M.101 M.101 M.101</td> <td>TegerMisson</td> <td>15 304948 AUX 1</td> <td>TAP Internation</td> <td></td> <td></td>	unit Outside HET Date 10 M.111 M.101 M.101 10 M.101 M.101 M.101	TegerMisson	15 304948 AUX 1	TAP Internation		
		bdə ekanatisiseda	tic datai	(Gapariely)		
The Distance of the second sec	40 05 10 18 20 Listypung				13AP	2004

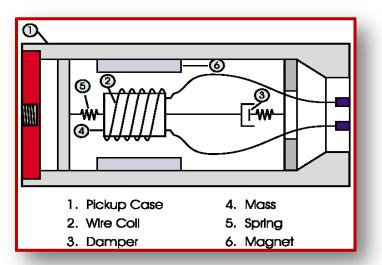
AST

EDDY PROBE CALIBRATION REPORT

Machine: P2	01 B		Date of Test: 1	6/09/02
Calibrated P	robe P /N: 1909	/30/05/1/05	Probe position:	G-DEX
Calibration I	Equipment : TI	K 3	-	
Probe Resista	ance(0hm) 4.2	0hm	Probe with Exte	ension 12.2 Ohm
Calibrated w	ith standard E	xtension Cable	Standard Drive	r S/N: STDDRV_22-
System Cable	e Length: 9 m.		Target Materia	l: 4140 Steel
Supply with	load: -16.70 Vd	Output per one	mils (1.633 Volts	
Supply witho	out load: -19.76	Vdc		
GAP (inches)	VOLTAGE	STANDARI	DEVIATION	SLOPE
0.00	0.720	2.00	1.28	N/A
0.01	0.718	2.00	1.282	N/A
0.02	2.017	3.63	1.616	129.9
0.03	3.570	5.27	1.696	155.3
0.04	5.321	6.90	1.578	175.1
0.05	7.168	8.53	1.364	184.7
0.06	8.984	10.17	1.181	181.6
0.07	10.627	11.80	1.171	164.3
0.08	12.301	13.43	1.130	167.4
0.09	13.916	15.06	1.148	161.5
0.10	15.183	16.70	1.514	126.7

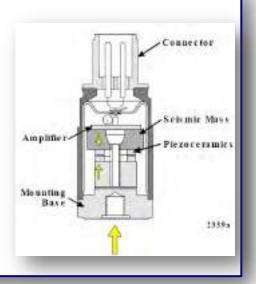
Vibration measurement on non-rotating parts



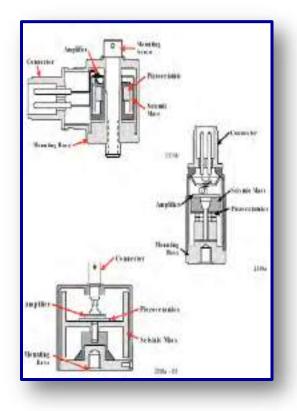

Seismic Velocity Sensor

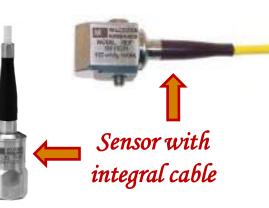
Velocity = The Displacement Per Time, <u>Normal Output is 100 mV/inch/sec, Pk</u>

1) Magnet inside with Coil outside



Acceleration = The Rate of Change of Velocity, <u>Normal Output is 100 mV/g, Pk</u>


- Piezoelectric material (sensing element) is placed under load using a mass
- As 'stack' vibrates, crystal is squeezed or released
- Charge output is proportional to the force (and acceleration)
- Electronics convert charge output into voltage output


Different kinds of ICP Accelerometers

Connector with integral cable

Sensor with integral 2 pin connector or without cable

IP 50 Connector without cable, local fabrication

IP 67 Connector with integral Armored cable

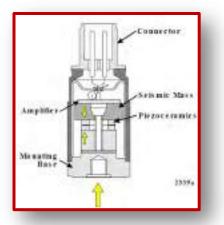
1	Microdot 10-32
14	Microdot 10-32, right angle
2	BNC, plug, male
2F	BNC, female
21	BNC, twinaxial
6	Amphenol, MIL-C-5015 style, 2 socket, metallic
0	Note: Electrical isolation between shield and transducer housing
6GSL/6GSLI	MIL-C-5015 style, 3 socket, splash proof, premium GSL: Electrical contact between shield and transducer housing
6GQ/6GQI	MIL-C-5015 style, 3 socket, splash proof, premium GSL: Electrical contact between shield and transducer housing GSLI: Electrical isolation between shield and transducer
60/601	MIL-C-5015 style, 2 socket, high temperature [200°C / 392°F] Q: Electrical contact between shield and transducer housing QI: Electrical isolation between shield and transducer housing
6QA/6QAI	MIL-C-5015 style, 2 socket, high temperature (200°C / 392°F) Q: Electrical contact between shield and transducer housing QI: Electrical isolation between shield and transducer housing
6SL/6SLI	MIL-C-5015 style, 2 socket, splash proof, premium SL: Electrical contact between shield and transducer housing SLI: Electrical isolation between shield and transducer housing
6W	MIL-C-5015 style, 2 socket, molded
1.1	Note: Electrical isolation between shield and transducer housing
6WR	MIL-C-5015 style, right angle, molded Note: Electrical isolation between shield and transducer housing
9W	Bendix, 4 socket, threaded, weatherproof
195L/195LI	MIL-C-5015 style, 6 socket SL: Electrical contact between shield and transducer housing SLI: Electrical isolation between shield and transducer housing
20	LEMO, 7 pin

AST

Common	cables	Description	C° range	F° range	Diameter in.	pF/t
-	J1	Coaxial, low noise, orange PVC jacket	-55 to 80	-67 to 176	0.088	30
	J3	Coaxial, low noise, high temperature, red Teflon® jacket	-100 to 260	-148 to 500	0.085	30
	J5A	Coaxial, RG 58, black PVC jacket	-40 to 105	-40 to 221	0.190	30
	J9T	Coaxial, RG 59, black Teflon® jacket	-80 to 150	-112 to 302	0.190	20
>	J9T2	Twisted pair, shielded, white Tefzel® jacket	-80 to 150	-112 to 302	0.190	27
-	J9T2A	Twisted pair, shielded, yellow Teflon® jacket	-80 to 200	-112 to 392	0.190	27
>-	J9T2AS	Twisted pair, shielded, yellow Teflon® jacket with stainless steel braid	-80 to 200	-112 to 392	0.210	27
**	J9T2S	Twisted pair, shielded, white Tefzel® jacket with stainless steel braid	-80 to 150	-112 to 302	0.210	27
>	J9T3	Three conductor, shielded, white Tefzel® jacket	-80 to 150	-112 to 302	0.190	27
- 40	J9T3A	Three conductor, shielded, yellow Teflon® jacket	-80 to 200	-112 to 392	0.190	27
>	J9T4	Four conductor, shielded, red Teflon® jacket	-80 to 200	-112 to 392	0.190	30
*	J9T4A	Four conductor, shielded, yellow Teflon® jacket	-80 to 200	-112 to 392	0.190	27
~	J10	Twisted pair, shielded, gray Enviroprene jacket	-50 to 125	-58 to 257	0.190	30
24	388L	Twisted pair, shielded, black Polyurethane jacket	-40 to 80	-40 to 176	0.175	60
dinne.	J88C	Twisted pair, shielded, black Polyurethane jacket, coiled with 6" straight ends	-40 to 80	-40 to 176	0.175	60
>	J95	Five conductor, shielded, black Polyurethane jacket	-20 to 90	-4 to 194	0.240	22
1	J96	Twisted pair, shielded, white Teflon® jacket	-80 to 150	-112 to 302	0.145	35
2	J9F	Twisted pair, foil shielded with drain wire, red Teflon® jacket	-70 to 200	-94 to 392	0.125	51

<u>Splash proof Connectors require a special tools</u> <u>for Clamping Cable and Connectors</u>

SPKIT


Field Installable, Splash Proof Connector Kits: Each kit contains tools and supplies to assemble 25 "6SL / 6SLI" connectors.

*NOTE: Connectors & Cabling must be ordered separately

Piezoelectric Velocity Sensors

The piezoelectric element in the sensor produces a signal proportional to acceleration. This small acceleration signal can be amplified for acceleration measurements or converted (electronically integrated) within the sensor into a velocity or displacement signal. The piezoelectric velocity sensor is more rugged than a coil and magnet sensor, has a wider frequency range, and can perform accurate phase measurements. <u>Normal Output is 100 mV/inch/sec, Pk</u>.

Advantage of Piezoelectric Velocity Sensor to Old Seismic Sensor

Traditional velocity sensors use an electromagnetic (coil and magnet) system to generate the velocity signal. Now, hardier piezoelectric velocity sensors (internally integrated accelerometers) are gaining in popularity due to their improved capabilities. A comparison between the traditional coil with magnetic velocity sensor and the modern piezoelectric velocity sensor is shown in table 1.

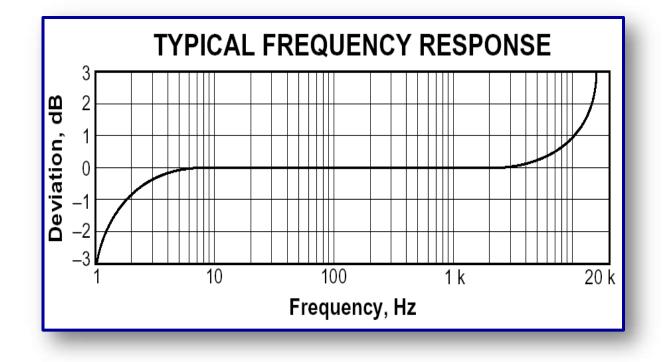
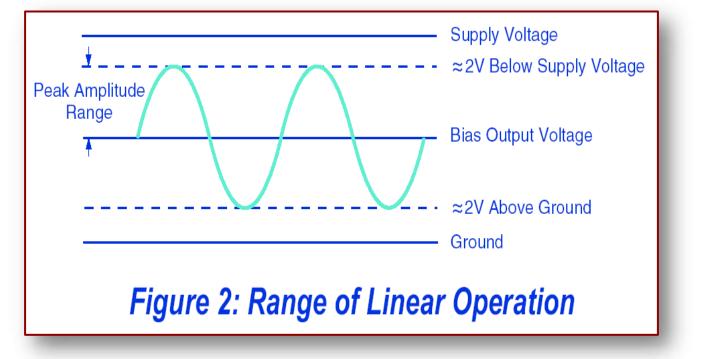
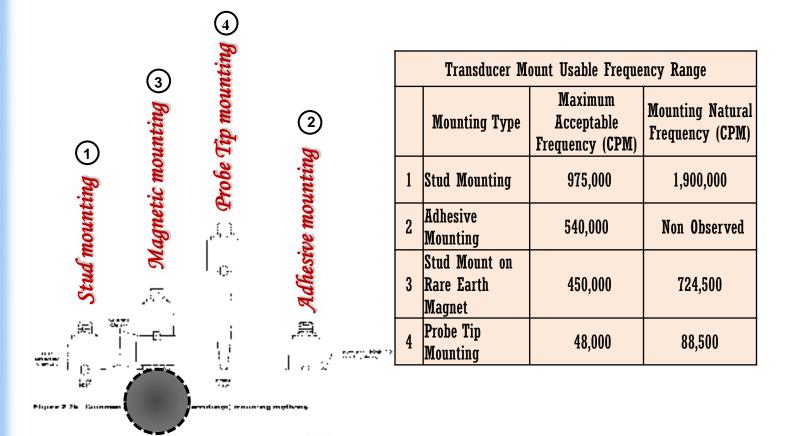
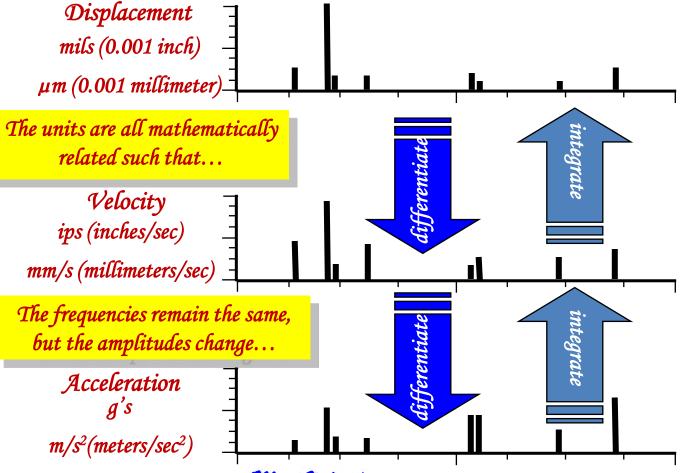

	Coil & Magnet Velocity Sensor	Piezoelectric Velocity Sensor
Flat Frequency Response 20 - 1,500 Hz		
20 - 1,500 Hz	Yes	Yes
2 - 5,000 Hz	No	Yes
Phase Fidelity		
2 - 5,000 Hz	Poor	Excellent
Low Off-Axis Sensitivity	No	Yes
Low Off-Axis Sensitivity Reduced Noise at		105
	No	Yes
High Frequencies		
Linearity	Good	Good
Mounting in Any Orientation	No	Yes
Operation to 120□C	Yes	Yes
EMI Resistance	Poor	Excellent
		Excellent
Mechanical Durability	Fair	Excellent

 Table 1. Electromagnetic Velocity Sensors vs. Piezoelectric Velocity Sensors



Frequency vs Amplitude accuracy example

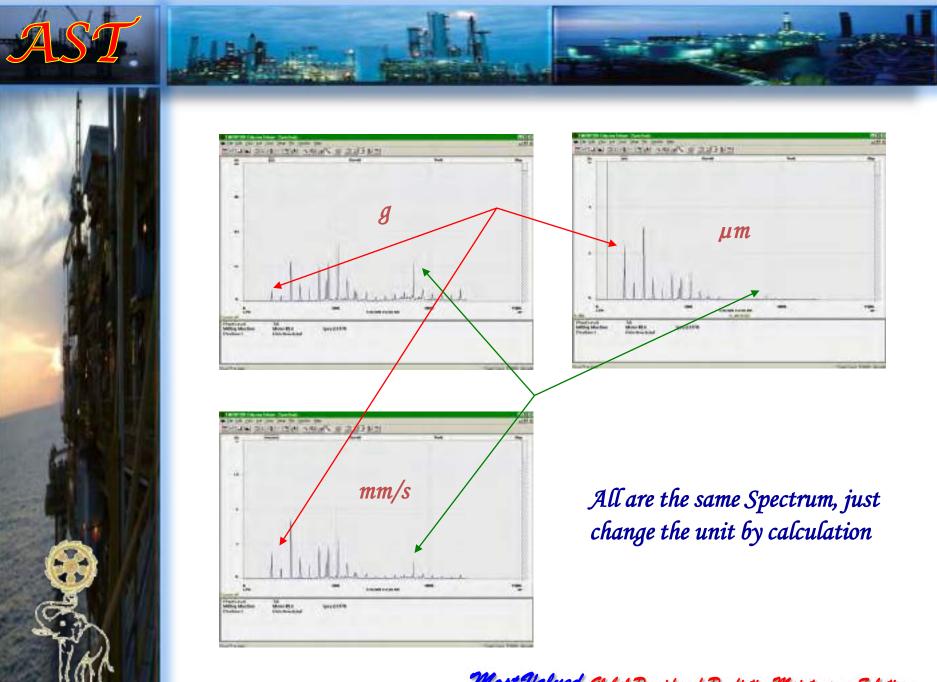


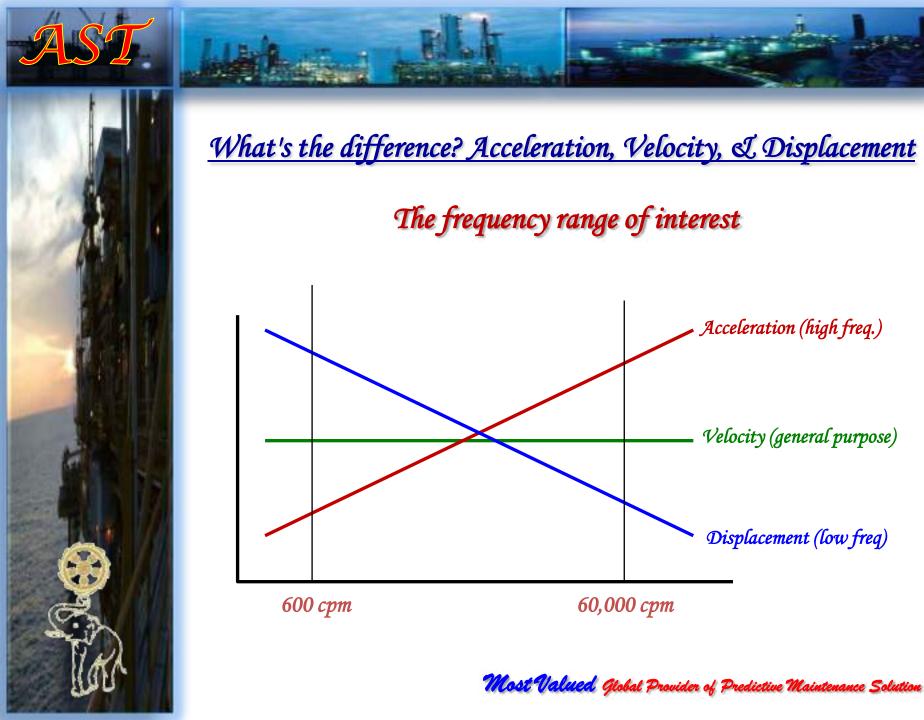


Typical Recommended maximum frequency ranges for common accelerometer mounting methods

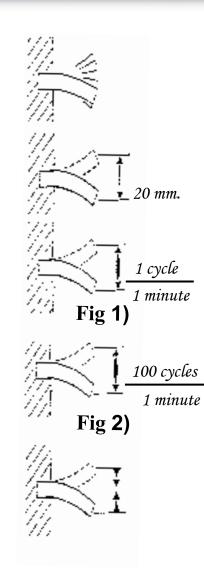
<u>Amplitude Units – What You See</u>

Unit Conversion


$$A = 64 f V \chi 10^{-5}$$
 $A = 202 f D^{2} \chi 10^{-8}$ G, Pk


$$\mathcal{V} = 1562 \frac{A}{f}$$

$$\mathcal{V} = 315f \mathcal{D} \times 10^{-5} \text{ mm/s, } \mathcal{P}k$$


$$\mathcal{D} = 495050 \frac{A}{f^2}$$

$$\mathcal{D} = 317 \frac{V}{f} \quad \mu \text{m, } \mathcal{P}k - \mathcal{P}k$$

Frequency Hz or CPM

Displacement in mm = Machine's Stress For Example; 20 mm. Amplitude, What's it tell us? Just Stress

Velocity in mm/s = Machine's Fatigue For Example ; the same displacement amplitude as 20 mm. Machine can be bent as 1,000,000 times. as Fig 1) the velocity amplitude is 20 mm/min = 0.33 mm/s, broken in 1,000,000 min.

as Fig 2) the velocity amplitude is 20 mm/1/100 min = 2,000 mm/min = 33.3 mm/s, broken in 10,000 min.

Acceleration in G = Impact Force from Bearing or Gear * Rate of Change of velocity from zero to max. velocity or max. velocity to zero, if the velocity has been changed so fast, it means high G, as a hammer knock to a rigid table

Criteria Acceptance for Case Vibration

Definition of machine classes according to ISO 2372

The following text is a custament from ISC 2372 (1574, E, page 6, Annex Ar, Teix (SO Decon monitation has also been (whilehed as Bhirsh Standard (65 4675, partil). A similar vibration classification of industrial mach nery can be found in Val 2056.

In croot to show how the recommended method of classification may be applied, examples of socific classes of machines are given below. If alroad be emphasized, nowever, that they are simply examples and it is recognized that other classifications are possible and may be substituted in accordance with the circum stances tonoamed. As and when circup stances per hit, recommended ons for accessable oversion server particular to the circum versy to particular types of machines will be propared. All present, experience subgests that the following classes are appropriate for most explorations.

Clasa I

individual parts of engines and machines, unregrally contracted will the complete machine in its normal operating sonalism (Production electrical motors of up to 15 ILW are typical examples of involunce in this category.)

Class II

Marium-sized machines, typically electrical motors with 15 to 75 KW output; without special foundations, rigidly motorted engines or machines (up to 300 kW) on special foundations

Class III

Carge (a metimovary and other large reachings with rocebing masses on right and neavy foundations which are relatively shift in the devolution of construming esprement

Class IV

Large particle travers and other large mechanism with inlating characters on foundations which are relatively soft in the direction of vibration measurance (for example lumogenerator sets, especially those with light weight substructures).

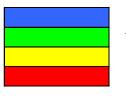
Class V

Machines and mechanical crive systems with unbalanceatile methal effects future to reciprocating parts), mounted on foundations which are reletively still in the circonom of viotal on measurement,

Class VI

Machines and mechanical drive systems with unpelanceable inecte effects (due to reciprocating parts), mounted on foundations which are relatively soft in the distation of whitation measurements; mechanes with rotating stackcoupled masses such as acater shafts in grinding mills machines tike centrifugatimationes with varying units ances catable of operations as self-ontained units without connecting components, vitrating screens dynamic largue costing machines and wheation exclipts used in processing plants.

Most Valued Global Provider of Predictive Maintenance Solution


Limit, mm/s, rms	Class I	Class II	Class III	Class IV	Class V
71	D	D	D	D	D
45.0 - 71.0	D	D	D	D	D
28.0 - 45.0	D	D	D	D	D
18.0 - 28.0	D	D	D	D	С
11.2 - 18.0	D	D	D	С	С
7.1 - 11.2	D	D	С	С	В
4.5 - 7.1	D	С	С	В	В
2.8 - 4.5	С	С	В	В	А
1.8 - 2.8	С	В	В	А	А
1.12 - 1.8	В	В	А	А	А
0.71 - 1.12	В	А	А	А	А
0.3 - 0.71	А	А	А	А	А
0 - 0.3	А	А	А	А	А

Remark: 1) Amplitude in mm/s 2) Detection type in rms. 3) Band Pass Filter as 10-1000 Hz.

ISO 10816 Part 3

Industrial Machines with nominal power above 15 kW and nominal speeds between 120 rpm and 15,000 rpm when measured insitu

Velocity		Pumps >	> 15 kW		Medium Siz	Medium Size Machines		lachines
10 -1000 Hz, r > 600 rpm	Ra	dial, Axial	l, Mixed F	low	15 kW < Pov	ver < 300 kW	300 kW < Po	wer < 50 MW
2 - 1000 Hz, r < 600 rpm	Gro	up 4	Gro	up 3	Gro	up 2	Gro	up 1
	Integrate	ed Driver	Externa	l Driver	160 mm < Motor Height < 315 mm		315 mm < M	lotor Height
Limit, mm/s, rms	Rigid	Flexible	Rigid	Flexible	Rigid	Flexible	Rigid	Flexible
> 18.0	D	D	D	D	D	D	D	D
11.0 - 18.0	D	D	D	D	D	D	D	D
7.1 - 11.0	D	D	D	С	D	D	D	С
4.5 - 7.1	D	С	С	В	D	С	С	В
3.5 - 4.5	С	В	В	В	С	В	В	В
2.8 - 3.5	С	В	В	А	С	В	В	А
2.3 - 2.8	В	В	В	А	В	В	В	А
1.4 - 2.3	В	А	А	А	В	А	А	А
0.7 - 1.4	А	А	А	А	А	А	А	А
0.0 - 0.7	А	А	А	А	А	А	A	А

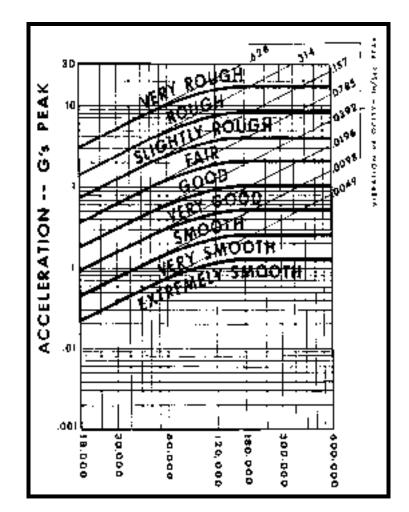
Newly Commissioned Unrestriced long-term operation Restriced long-term operation Vibration causes damage

ISO 10816 Part 3

Industrial Machines with nominal power above 15 kW and nominal speeds between 120 rpm and 15,000 rpm when measured insitu

Displacement 10 -1000 Hz, r > 600 rpm	Ra	Pumps > 15 kWMedium Size MachinesRadial, Axial, Mixed Flow15 kW < Power < 300 kW		Large Machines 300 kW < Power < 50 MW				
2 - 1000 Hz, r > 120 rpm	Gro	up 4	Gro	up 3	Gro	up 2	Gro	up 1
	Integrate	ed Driver	Externa	l Driver	160 mm < Motor	Height < 315 mm	315 mm < M	fotor Height
Limit, micron, rms	Rigid	Flexible	Rigid	Flexible	Rigid	Flexible	Rigid	Flexible
> 140	D	D	D	D	D	D	D	D
113 - 140	D	D	D	D	D	D	D	С
90 - 113	D	D	D	D	D	С	D	С
71 - 90	D	D	D	С	D	С	С	В
56 -71	D	D	D	С	С	В	С	В
45 -56	D	С	С	В	В	В	В	В
36 - 45	D	С	С	В	В	В	В	А
28 - 36	С	В	В	В	В	А	В	А
22 -28	С	В	В	А	В	А	А	А
18 - 22	В	В	В	А	А	А	А	А
11 -18	В	А	А	А	А	А	А	А
0 - 11	А	А	А	А	А	А	А	А

Un R


Newly Commissioned Unrestriced long-term operation Restriced long-term operation

257

