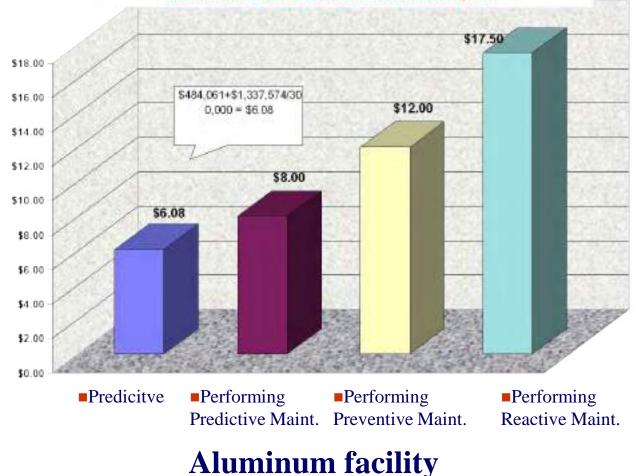
About PdMA

- Privately held company located in Tampa, Florida
- Active in predictive maintenance since 1983
- Motor Testers
 - EMAX (Dynamic Testing)
 - ✤ MCE (Static Testing)
 - MCEMAX (Combination)

MCEMAX


PdMA Client List

- Aerospace NASA Langley Research Center, The Boeing Company
- Automotive General Motors, Ford
- Petro-chemical Chevron, Syncrude Canada, LG Chemical (Korea), Bharat Petroleum (India), PEMEX (Mexico), Caltex (Korea, Philippines, Bahrain), Coastal Regining (Philippines)
- Pulp & Paper Mead Paper Corp., Bowater Inc.
- Steel & Aluminum Commonwealth Aluminum, Dofasco Inc.(Canada), Alcoa, POSCO (Korea)
- Utilities Cinergy, Ameren UE, KEPCO (Korea), KPS (Korea – Utility Service)

Predictive Maintenance Benefits

Motor Management & Predictive Maintenance Payback

(Industry Average Dollars spent per installed horsepower per year) Motor costs + Labor & Burden / Installed Horsepower

Why Motor Testing?

- Quality Assurance testing on new or reworked motors (Baseline Test)
- **Trending** through periodic testing of motor condition
- **Diagnostic** testing to evaluate / troubleshoot circuit faults

The Most Important Benefit of the MCEMAX

FINANCIAL SAVINGS

- Reduction in unexpected motor failures
 - Improved production
 - Less downtime
 - Less scrap materials
 - Better inventory control
- Reduction in new and repaired motor costs
 - Improved quality assurance
 - Root cause analysis

Average Return on Investment

Industry	<u>Avg. ROI</u>	<u>Avg. Reduction in Downtime</u>
Overall	5.5 Months	9.48%
Automotive	3 Months	12.50%
Manufacturing	3.5 Months	20%
Mining	1 Month	10%
Petro/Chemical	3.5 Months	2.50%
Pulp and Paper	6.6 Months	6.70%
Service	9 Months	12.50%
Metal Fabrication	2 Months	5%
Utility	5.9 Months	5.80%

Based on survey results from PdMA equipment users - PdMA Corporation, 1999

Other Benefits of the MCEMAX

Equipment Versatility

Unparalleled Vendor Support

Downtime Reduction at GM Plant

•GM's Defiance, Ohio Plant

MCE motor circuit evaluator.

 1996 Annual downtime figure decreased 85%. Downtime Reduction at Miller Steam Plant

- Major producer of electricity for Alabama Power.
- 10-12 Critical motors selected for reconditioning (old method).
- Purchased MCE at 1995
- Before 1995: \$500,000/Year for scheduled motor repair.
- **•**By 1998: \$172,000/Year

User Friendly

Multiple Technologies in one tester

Dynamic and Static technologies in one case

Equipment Portability

- Less than 20 lbs
- Battery or AC Power
- Laptop interface includes historical data

Automatic Data Analysis

Operator alerted of alarming or changing conditions

Equipment Safety

Non-destructive testing

Unparalleled Vendor Support

Technical support for life of equipment
Quarterly Newsletter

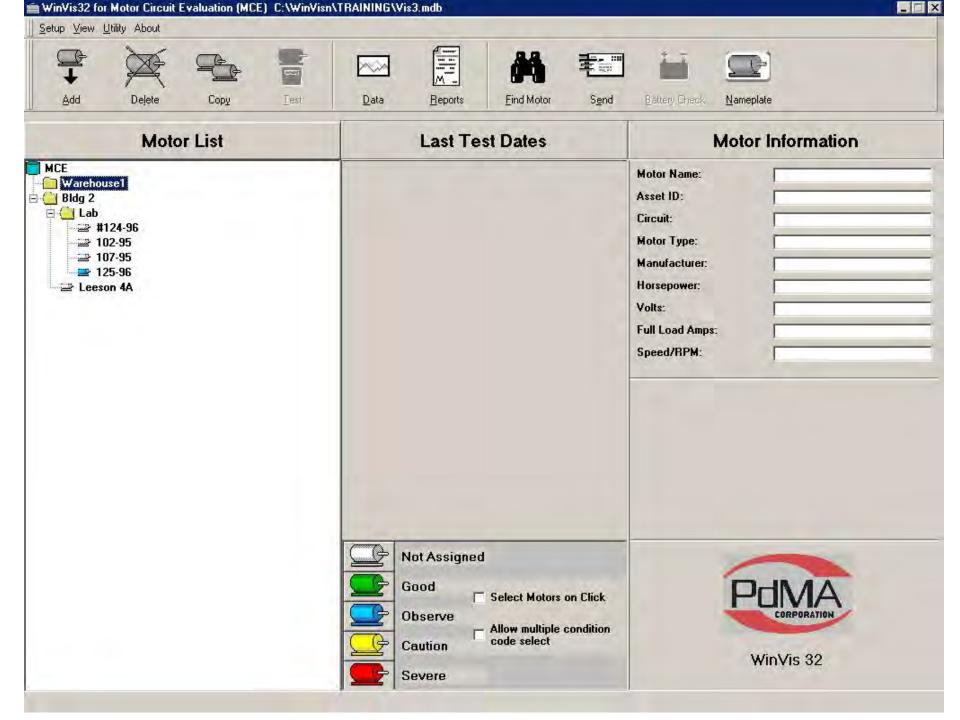
Equipment Versatility

Convenient in all plant conditions

- EMAX tests while the motor is running
- MCE tests while the motor is shut down

Effective in all applications

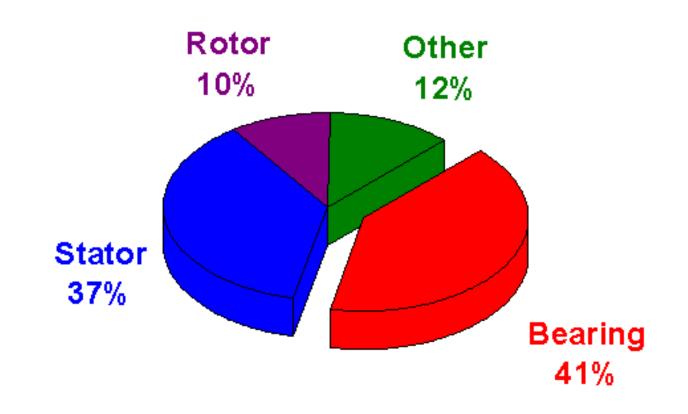
Can be used for quality assurance, trending, or fault diagnosis


Tests all variety of motors

Not limited by size or type of motor

Effective in all potential fault zones

MCEmax


SOFTWARE

WinVis Features

- Keeps track of all motors
- Stores nameplate information
- Controls motor testing
- Provides immediate results
- Allows comparison of test results
- Develops/prints reports

Summary of Motor Failures

Power Quality
Power Circuit
Insulation
Stator
Rotor
Air Gap

Application to Fault Zones

	MCE	EMAX
Power Quality	N/A	Power Analysis
Power Circuit	Standard Test	Power Analysis
Insulation	Standard Test PI,DA, SVT	N/A
Stator	Standard Test RIC	Power Analysis In- Rush/Start up
Rotor	Standard Test RIC	MCSA
Air Gap	Standard Test	In- Rush/Start up Eccentricity
	RIC	

Standard Test: RTG, CTG, Phase Resistance, Phase Inductance SVT: Step Voltage Test

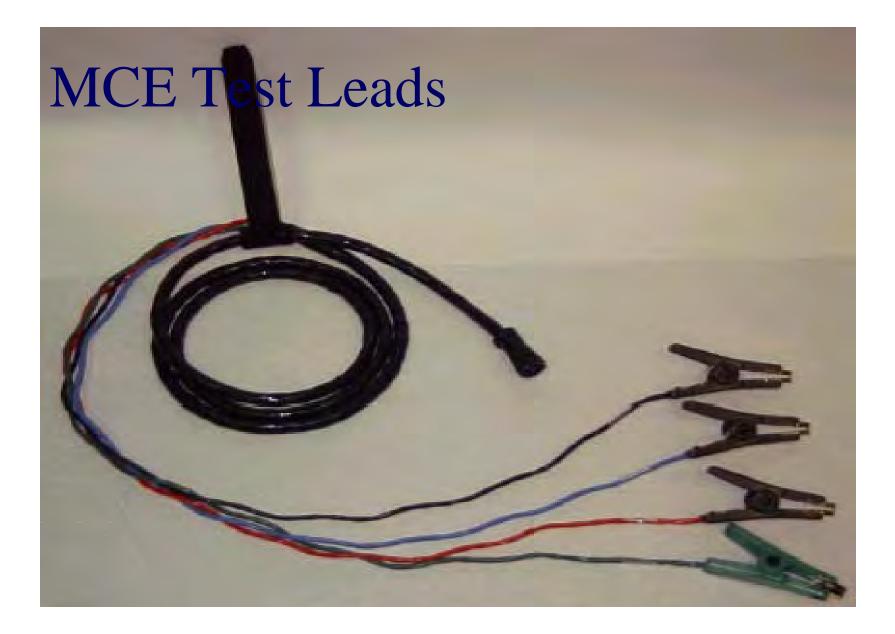
HARDWARE

Hardware

- Shipping Case
- Tester
- Laptop
- Accessory Bag

Shipping Case

MCE Tester


MCE Accessory

- Laptop computer
- RJ-45/serial port cable Interface cable
- Test lead connector Multi-pin plug
- Tester battery Camcorder battery
- Battery status display
- Tester board Located under mold
- Power supply board Located under mold
- Battery monitoring board Located under mold

Test leads

- Standard
- Commutator Bar-to-Bar
- Dial (Position) indicator
- Computer power cord/battery charger
- Tester batteries and charger
- Computer spare battery (CD ROM and/or floppy drive)

DC Commutator Bar-to-Bar Test Leads

MCE Standard Test

- Resistance to ground
 - Measured in Mohms
 - Temperature corrected
 - Trended over time
 - Potential choices of 500 -1000V
 - Selections of 250V -5000V available with 5kV
- Capacitance to ground
 - Measured in picofarads
 - Trendable parameter
 - Used to measure the dirt or moisture build-up on the insulation

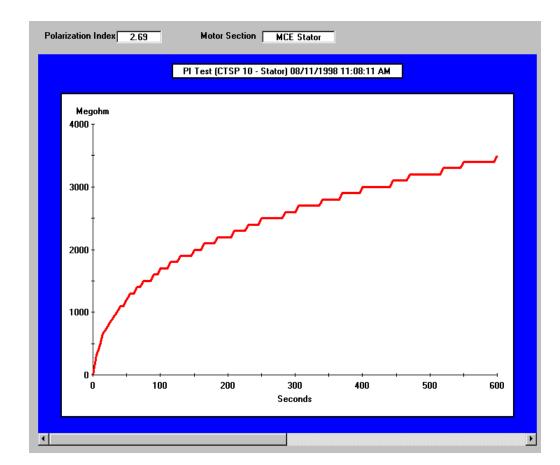
<u>F</u> ile	<u>V</u> iew <u>C</u> ondition Code Tes	st				
T	A <u>C</u> Standard	Polarization Index				
	Test Date	01/25/1999	03/22/1999			
	Test Time	06:20:08 PM	10:30:11 AM			
		Baseline				
	Frequency	1200	1200			
	Mohm Ph 1 to Gnd					
	Charge Time	30	30			
\sim	Voltage	500	500			
XR E	Motor Temp	40	40			
ш	Measured Mohm	630.0	1200.0			
	Corrected Mohm	630.0	1200.0			
	pF Ph 1 to Gnd	31000	24250			
	ohm Ph 1 to 2	0.26450	0.26000			
	ohm Ph 1 to 3	0.26300	0.25850			
	ohm Ph 2 to 3	0.26600	0.26200			
	mH Ph 1 to 2	11.360	12.200			
	mH Ph 1 to 3	10.420	10.720			
	mH Ph 2 to 3	11.860	11.890			
	Avg. Inductance	11.213	11.603			
	% Res. Imbalance	0.57	0.70			
	% Ind. Imbalance	7.07	7.61			
	Avg. Inductance	0.00	0.00			
	Test Location	MCC	MCC			
	MCE #	30227	30227			
	User					
Stator	Notes	No	No			

MCE Standard Test

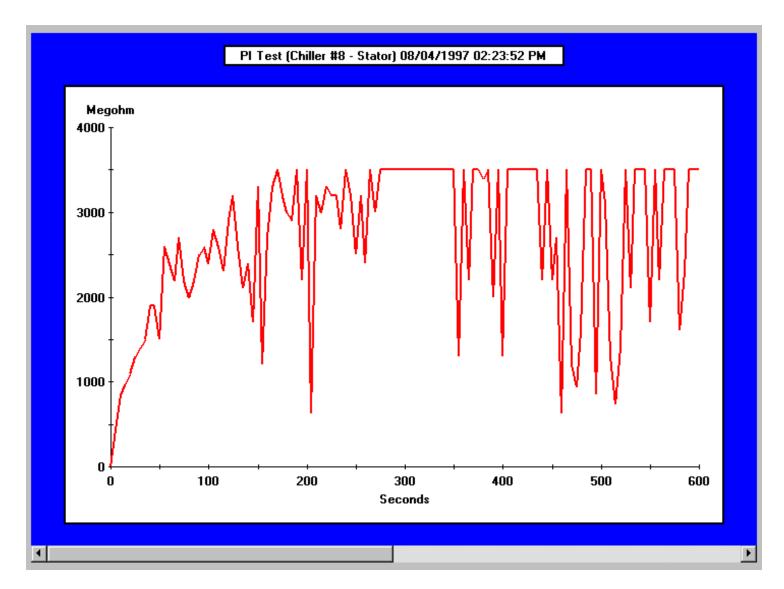
Phase resistance

- Measured in microhms
- Highly accurate
- Imbalance calculated
- Indicates high resistance connections

Phase inductance

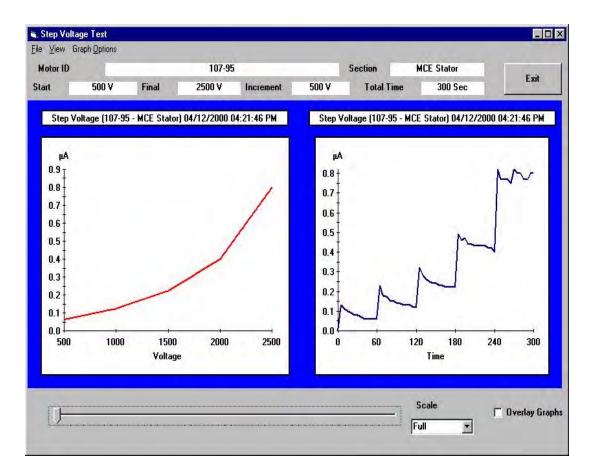

- Measured in mH
- Highly sensitive parameter
- Imbalance calculated
- Indicates faulty capacitors

<u>F</u> ile	⊻iew <u>C</u> ondition Code Te	st					
T	A <u>C</u> Standard	<u>P</u> ola	arization Index	<u>D</u>	ielec. Absorp.	- Y	R <u>I</u> C
	Test Date	09/16/1997	09/16/1997	09/16/1997	09/16/1997	09/16/1997	09/16/1997
	Test Time	09:51:48 AM	10:53:37 AM	10:56:16 AM	10:59:38 AM	11:03:03 AM	11:47:57 AM
		Baseline					
	Frequency	1200	1200	1200	1200	1200	1200
	Mohm Ph 1 to Gnd						
	Charge Time	30	30	30	30	30	30
×	Voltage	500	500	500	500	500	500
Emax	Motor Temp	20	20	20	20	20	20
۳I	Measured Mohm	>2000	>2000	>2000	>2000	>2000	>2000
	Corrected Mohm	OVR	OVR	OVR	OVR	OVR	OVR
	pF Ph 1 to Gnd	3000	3000	3000	3000	3000	2750
	ohm Ph 1 to 2	18.04500	18.07500	18.07500	18.08000	18.08000	17.69500
	ohm Ph 1 to 3	18.05500	18.06500	18.07000	18.07000	18.07500	18.08500
	ohm Ph 2 to 3	18.04500	18.06500	18.06500	18.07000	18.07000	17.68500
	mH Ph 1 to 2	129.800	122.500	129.800	131.600	127.200	122.600
	mH Ph 1 to 3	121.300	129.800	123.800	128.700	131.700	132.000
	mH Ph 2 to 3	125.200	128.700	130.400	124.700	125.800	122.900
	Avg. Inductance	125.433	127.000	128.000	128.333	128.233	125.833
	% Res. Imbalance	0.04	0.04	0.03	0.04	0.03	1.48
	% Ind. Imbalance	3.48	3.54	3.28	2.83	2.70	4.90
	Avg. Inductance	0.00	0.00	0.00	0.00	0.00	0.00
	Test Location	N/A	N/A	N/A	N/A	N/A	N/A
	MCE #	10147	10147	10147	10147	10147	10147
	User						
stator	Notes	No	No	No	No	No	No


MCE PI & DA

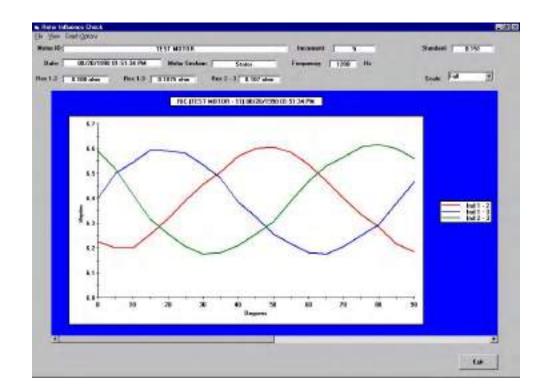
• Dielectric Absorption Ratio

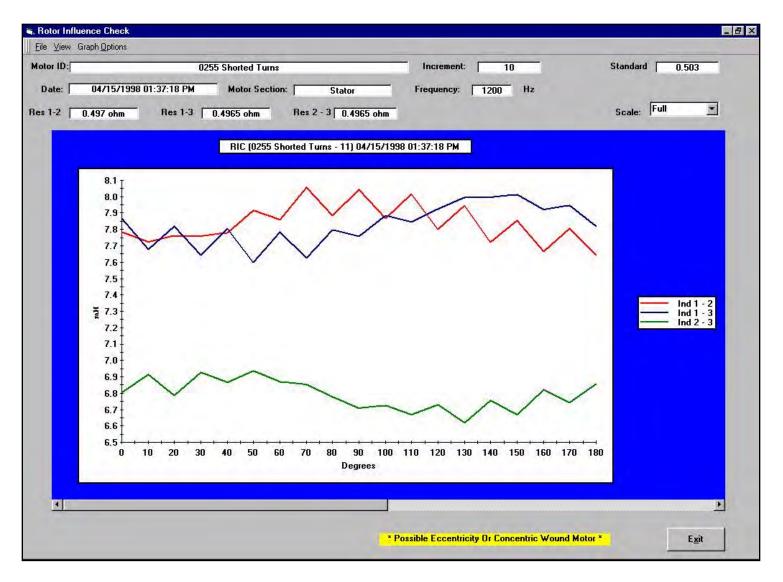
- ✤ 1 minute test
- RTG readings graphed every 5 seconds
- Ratio of value at 60 seconds to value at 30 seconds
- Polarization Index
 - ✤ 10 minute test
 - RTG readings graphed every 5 seconds
 - Ratio of value at 10 min.to value at 1 min.



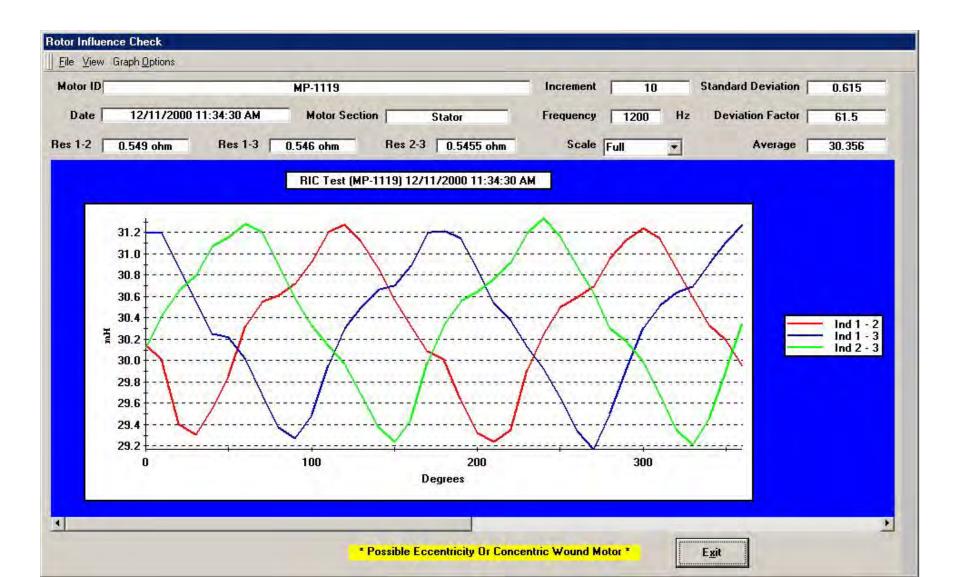
MCE PI Test

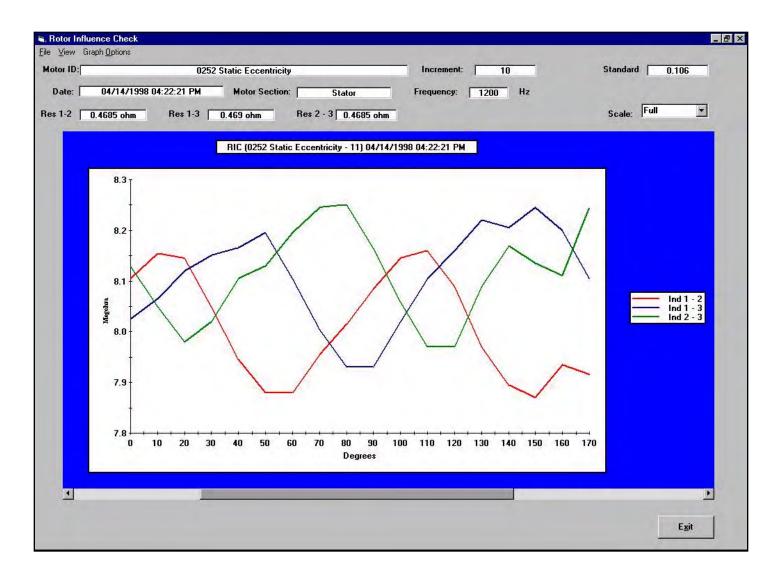
5kV Module


- Optional MCE accessory
- Offers Step Voltage Test
- Safely stresses insulation
- Less stressful than a hipot test


Surge Test -IEC 34-15 4xVLine + 5000 for new motor, 65% of new motor rate for in-used motor -EAFA 2xVLine + 1000 for new motor, 75% of new motor rate for in-used motor

MCE RIC Test (Rotor Influence Check)

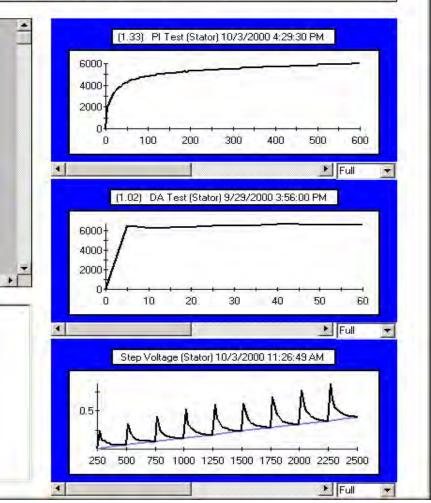

- A measurement of phase to phase inductance over rotation
- Usually through one pole face
- Confirms the presence of rotor, stator and air gap anomalies


MCE Turn-to-Turn Short

MCE Broken Rotor bar

MCE Air Gap

MCE Detailed Report

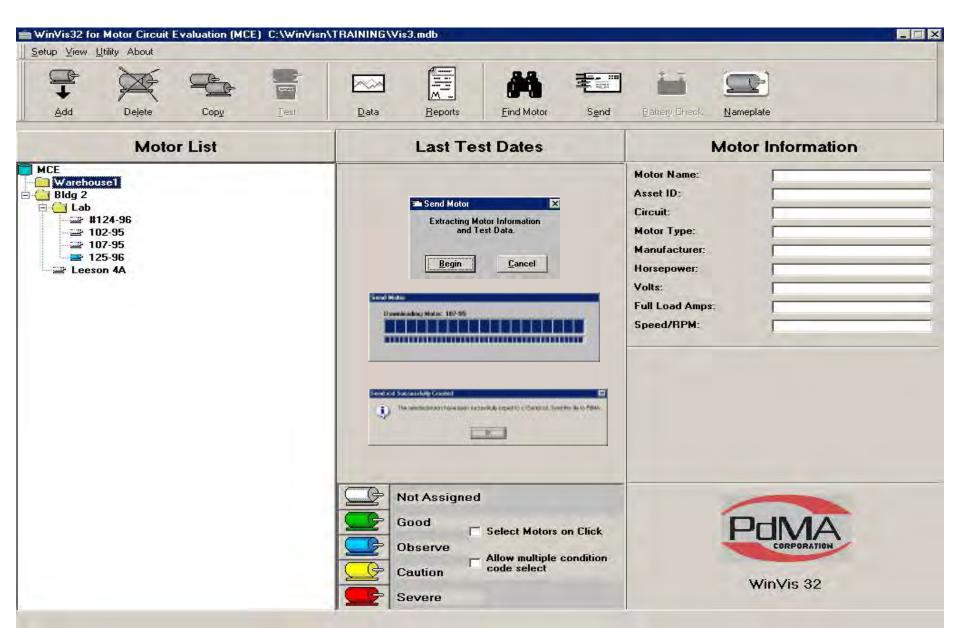

🗃 Default

File Iemplate Notes View

Report Title:	A. 6. 6. 6. C. T. 100	Motor ID:	125-96	Frame #:	XXX
Date:	12/26/2000	Voltage:	480	Stator Slots:	N/A
Submitted By:		HP:	5	Rotor Bars:	0
Chart Section	MCE Stator	FLA:	6.5		
Condition Code:	Good	Manufacturer:	MARATHON ELECTRIC		

Test Date	05/28/2000	08/28/2000	19282000	09/29/2000	09292000	10/03/2000	10/03/2000
Test Time	02:00:06 FM	11:31:21.984	04:38:56 FM	0363:01 FM	04:27:24 #68	62:54:41 AM	D4:11:29.PE
	Baseline						
Frequency	1200	1200	1200	1200	1200	1200	1200
Mohm Ph 1 to Grid				-		-	
Charge Time	60	60	60	60	60	60	660
Voltage	1000	500	500	5000	5000	5000	2500
Motor Temp	22	22	22	22	- 22	- 22	- 22
Measured Mohm	OVE (MCE)	OVR (AIS)	5300.0	1720000.0	4500.0	3330.0	4000.0
Contected Mohn	OVR (MCE)	0.00186	7500.0	493900.0	1300.0	950.0	1100.0
pFPh 1 to Grid	6750	6750	6760	6750	6760	6750	6750
ohni Ph 1 to 2	2.54500	2,53500	2.54000	2 55500	2.55900	2.54000	2.54500
onm Ph 1 to 3	2.54000	2,53500	2.54000	2.55500	2.65500	2.54000	2.54500
ohte Ph 2 to 3	2.54000	2,63500	2.54000	2,55500	2,56600	2.54000	2,54500
mH Ph Tto 2	23.740	23,800	23,490	23.740	23.730	23,670	23.570
mill Ph i to 2	23,600	23,460	23,430	23,440	23,430	23:370	23,530
mil Ph 2 to 3	23.510	23,830	23.810	23/810	23,600	23:540	23,650
Avg. Inductance	23 583	23.697	23.573	23 597	23.667	23 527	23,603
% Res. Imbalance	0.13	0.00	0.00	0.00	0.00	0.00	0.00
% and imitialance	0.66	0.93	1.00	0.66	0.66	0.67	0.21
\$ Power Loss	0.22	0.00	0.00	0.00	0.00	0.00	0.00
Test Location	Motor Leads	NZA -	Mettor Leads	Main Disc	Main Disc.	Main Disc	Mettor Lead
MCE#	030395	030395HV	030395HV	030395HV	030385HV	0.303935HV	030395HV
User	PHIL	和国	印机	PHIL	印机	PHU	FHE
Notes	No	No	No	No	No	Ng	No

One example of how customizable the Detailed Report is.



_ 🗆 X

Fault Zone Analysis Report

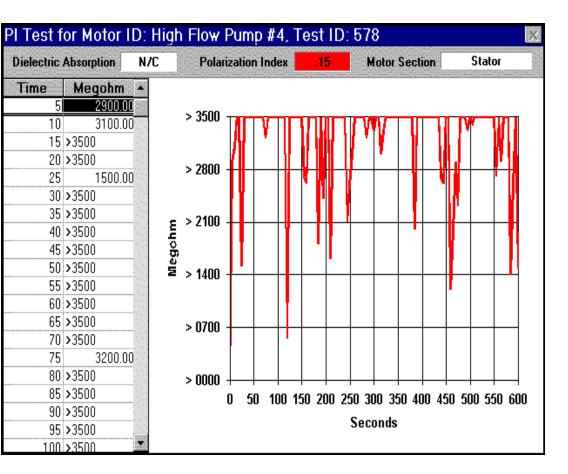
File				
Report Date	12/26/2000			
Fault Zone	Test Type		Date	Condition Assessment
Power Circuit	Voltage Imbalance Ph-Ph Resistive Imbalance		09/02/99 08/30/99	Good
Power Quality	Voltage THD Ph-Ph Current THD HVF	0.63	09/02/99 09/02/99 09/02/99	Good
Insulation	Stator RTG (Meg) Good CTG (pF) Zero Sequence (%I) Rotor	48500.00	08/30/99	Good
	RTG (Meg) PI CTG (pF)	N/A N/A N/A		
Stator	Imp. Imbalance Inductive Imbalance		09/02/99 08/30/99	Good
Rotor	Fp Amplitude (dB) Inductive Imbalance Resistive Imbalance Inductance Ph-Ph (mH) Resistance Ph-Ph (Ohm)	N/A N/A N/A	1.00	Good

Send Feature

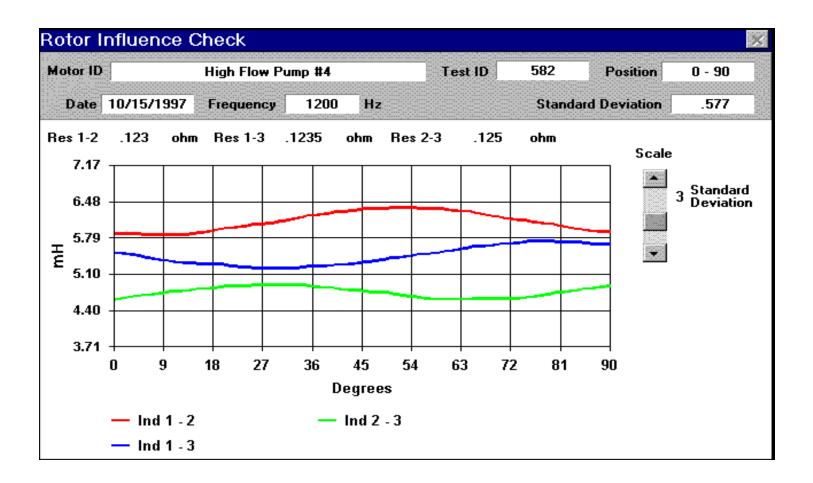
Motor Cleared

MCE testing shows that many times the motor is not the problem; possible sources include:

- Power circuit
- Faulty load
- Improper application


Case Study

- Motor would trip on start-up (soft start)
 Decision made to replace starter at close to \$50,000
- After starter replacement, the motor continued to trip
- MCE testing performed


Read-Only Na	meplate
Motor ID:	High Flow Purr
Circuit:	P-4
Location:	MCE\Ottawa R
Motor Type:	AC Induction
Mfq Name:U.S. ELI	ECTRIC
Volts:	575
HP:	125
KW:	93.25
FLA:	119
Operating Speed:	1775
Min./Base Speed:	
Installed:	
Efficiency:	.9
Frame #:	405T DP
Ins Type:	В
Svc Factor:	1.15
Pwr Factor:	.85
Field Volts:	
Field Current:	
#Poles:	

MCE Results

Test Date	10/15/1997
Test ID:	579
Frequency	1200
	BASELINE
Mohm Ph 1 to Gnd	
Charge Time	30
Voltage	1000
Motor Temp	20
Measured Mohm	> 2000
Corrected Mohm	OVR
pF Ph 1 to Gnd	14500
ohm Ph 1 to 2	0.12300
ohm Ph 1 to 3	0.12400
ohm Ph 2 to 3	0.12500
mH Ph 1 to 2	6.275
mH Ph 1 to 3	5.290
mH Ph 2 to 3	4.430
% Res. Imbalance	0.81
% Ind. Imbalance	17.69
\$ Power Loss	32.22

MCE Results

Conclusion

- Multiple tests in one technology confirms stator problem
 - ✤ MCE
 - Polarization Index shows insulation break down,
 Standard test shows high inductive imbalance and
 RIC shows high inductive imbalance.

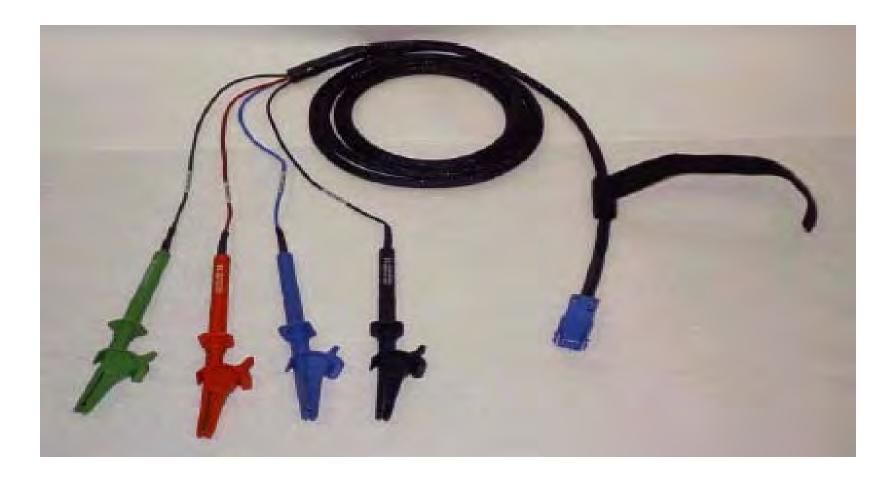
Emax (Dynamic Tester)

HARDWARE

Shipping Case Tester Accessory Bag

Shipping Case

Hardware


• Component makeup

- Power supply
- Battery Monitoring board
- EMAX Tester board
- Laptop computer
- Durable carrying case
- Accessory bag

Voltage Probes

Current Probes

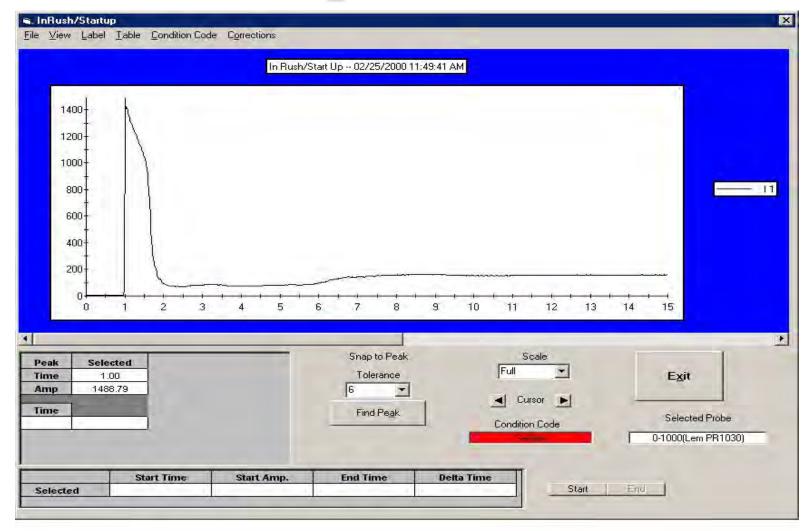
EMAX **Case**

- Polymer Case
- Laptop computer
- RJ-45/serial port cable Interface cable
- DAQ Interface cable
- Current test leads 3 phases
- Voltage test leads 3 phases plus ground
- Tester battery NiMH Camcorder battery
- Battery status display
- Tester board Located under mold
- Power supply board Located under mold
- Battery monitoring board Located under mold

Capturing Current Signals

- Utilizes clamp-on current probes to acquire signals
 - No electrical connections need to be made
 - Equipment operation is not interrupted

Capturing Current Data


Current Analysis Fault Zones

- Rotor
 - In-Rush Startup (peak in-rush current and time to start motor)
 - Low and High Resolution (MCSA) (pole pass Frequency [F_P] sideband amplitude)
- Air Gap
 - Eccentricity (eccentricity peaks)

In-Rush Startup

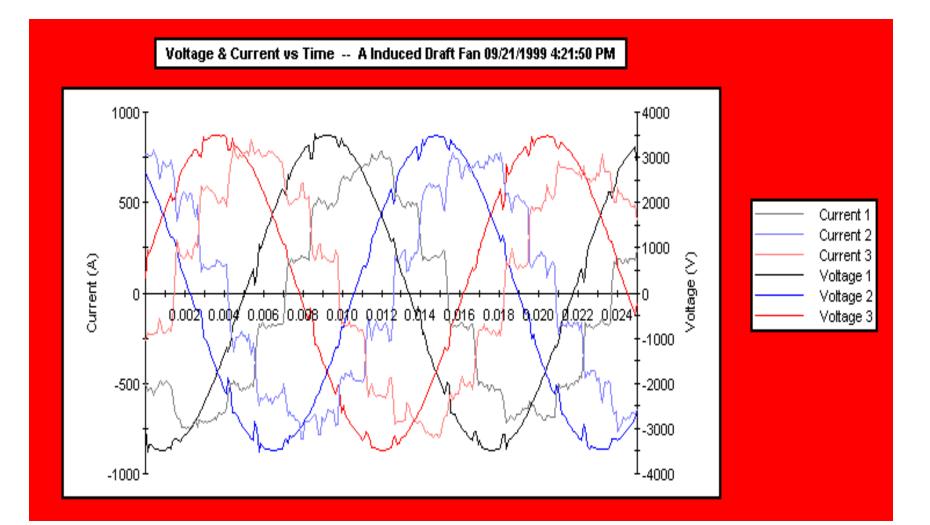
- Perform as often as possible
- Provides valuable information when troubleshooting
- Stator and rotor problems cause changes in the In-Rush Startup profile
 - Peak current
 - Graph shape
 - Duration

In-Rush Startup Manual Capture

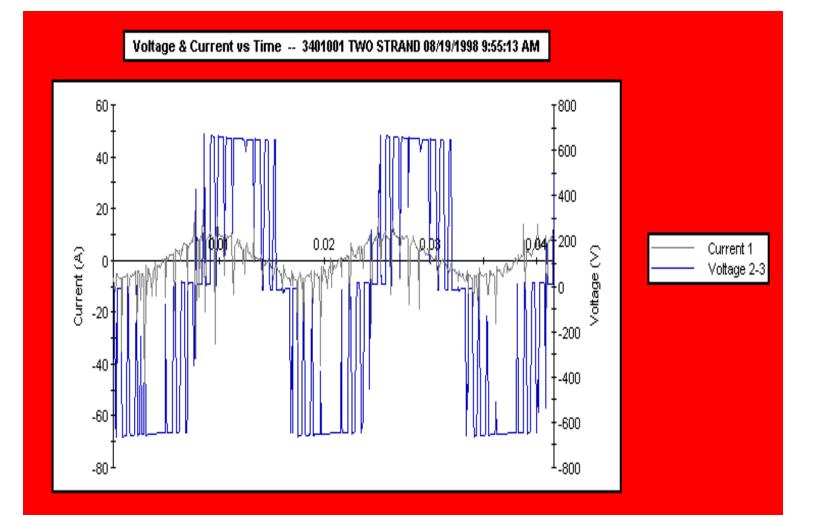
In-Rush Startup Auto Capture Broken Bars

-			In Rush	ı/Start Up 01/11/20	01 09:31:19 AM			1
1000 900 800 700 600 500 400 300	₩ ₩	****						_
200 100 0	Ē	2 3	+ + + + + + + + + + + + + + + + + + +	+ + + + 6 7 1	+ + + + + + + + + + + + + + + + + + +	, , , , , , 11 12 13	14 15	
100 0	ŧ, l,	2 3	4 5	Snap to Pe Toleranc	e X	Scale		cit ected Probe)(Lem PR1030)

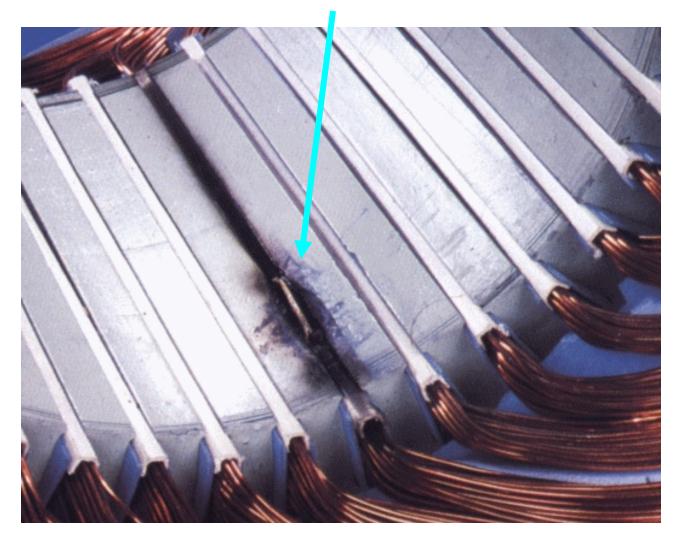
Power Quality


- Voltage and current values
- Voltage and current unbalance
- Voltage and current THD (Total Harmonic Distortion)
- Voltage and current crest factor
- System harmonics

EMAX


- 5 Second route based test
- Provides complete power data
 - Voltage quality
 - Current quality
 - Power information
 - Efficiency
 - ✤ Impedance

		VOLTAGE					POINTR			Hern Plats
	FWINING	TOTRMS	Č.K.	ING		204	(WAR)	82/6		TECO
1898.14	460.80	481.02	1.46	1.8	Page 1	6.43	3.31	6.35	0.85	Faans \$ 2581
HRME2-8	463.68	464.02	1,44	1.81	Phote 2	5.52	3.42	6.49	0.85	
1.1.1	462,08	462.51	1,44	1,8	Page 3	6.60	3.65	6,21	0.84	Violtage 485 FEA 24.9
Average	462,09	442.62		1	TOM	16.67	11.37	19.65	0.85	BIP 20
MIMMORT	0.30	1.35	INTE	1.11	FOND Septist	16.67	HLR.	19,58	0.85	PF 8.85 E0 8.87
white the vote of the	1.00	NEMO	Decorry	1.30		2	_		-	5pand 3510
	2200	11					HIGHLIGHT	6		Poles 2
Vblagm1	266.32	285.66	6.48	1.34	The second second					Slata D
Votings 2	207.52	290.47	1.48	1.47	Elizonay:	10.07	2			Ban 20
Volago 3	206.13	286.30	1.42	1.30	IP Ovqui	2.08	13			
Average	368.79	287.04	12		MAY Chippe	1400.82				
University 1	0.42	5.42								
	-	CURRENT		-		50	HENCE IN	UTA .	-	
and the second	-									
Correct 1	23-85	25.64	6.44	219			Migative	Zini		
David 7	29.23	34.27	1;4I	2.34	Vol Phate-Phate	482.39	1.73	0.00	41	
Current 3	25.20	2524	1.52	2.24	Vol Phase (South of	268,79	4.00	1,57		
Average	24.43	34.46	12		Carrient	24.43	0.54	0.54		
Sinted	3.17	3.17			1.100					
%/1A	9011	95.25	1			54	Aright	it.e.s	Aciple	
	1	MPERCHE			Zero	10.93	30.62	0.20	158.85	
					PostMe	0.21	317.44	10.92	172.03	
	Real U	Martinle	Arde		Nepatre	0.28	184.55	0.13	34371	
	9.52	11.17	31.37					2.14		
Phase V					Phase Contiguester	1 harded	Accessed 5 Ter	Dectaria	22	
Pfans T	9.4D	11.00	31.78		PTIMEN LEFTICLE HERET					

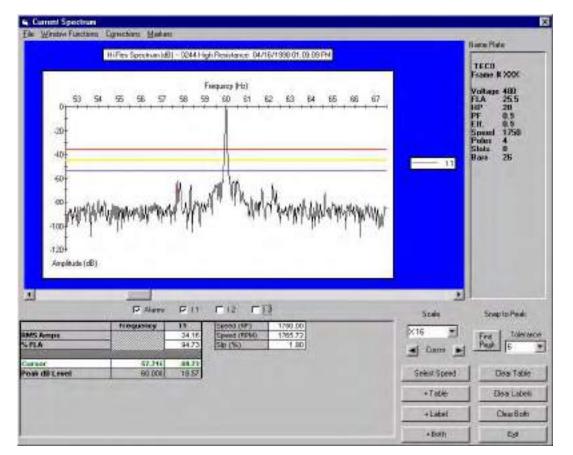

SCR (Silicon Control Rectifier) VFD Variable Frequency Drives

Pulse Width Modulated Inverter

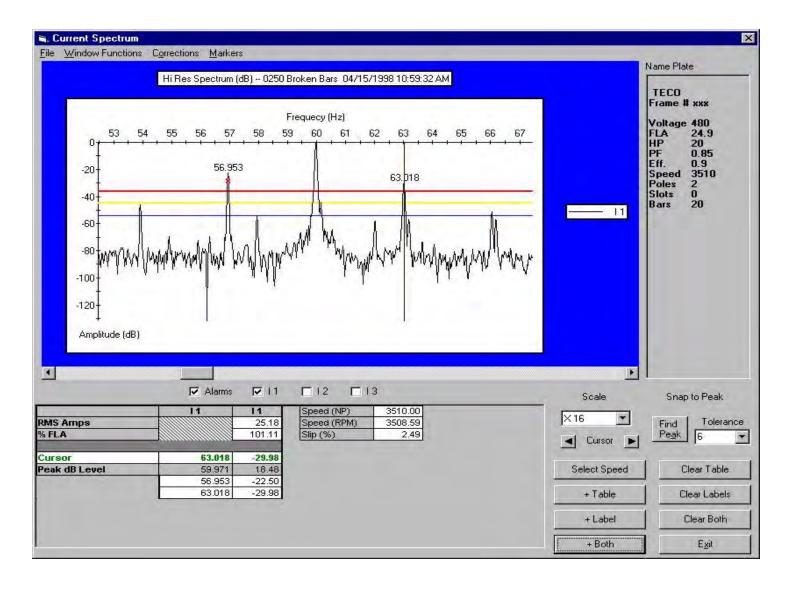
Problems Associated With VFDs

Power Circuit

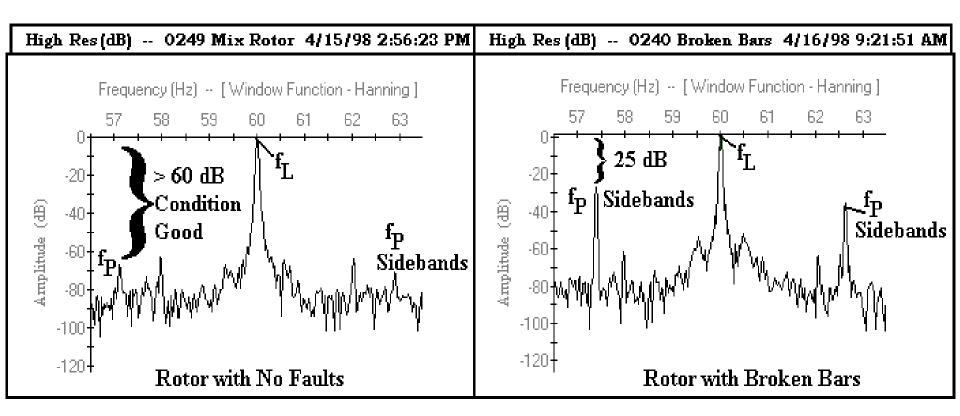
 High resistance connections ✤ At the starter ✤ At the local disconnect ✤ At the motor connection box Defective Pf correction capacitors Defective cabling Defective contact surfaces


Low/High Resolution (MCSA) Tests

• Low Res. 0-480 Hz, 17 seconds

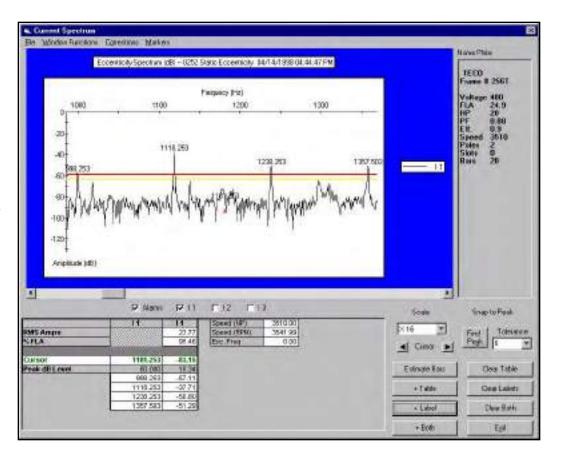

- High Res. 0-240 Hz, 34 seconds
- Determine amplitude of pole pass frequency (F_P) sidebands
- Uses speed of motor to identify pole pass frequency (F_P) sidebands

Emax


- High and Low resolution
- Data can be trended
- Pole pass amplitude comparison - rule of 4 & 5
- High Resolution
 - ✤ FMAX = 240
 - ✤ .03 Hz Resolution Steps
 - ✤ 480 Sample/Sec
- Low Resolution
 - ✤ FMAX = 480
 - ✤ .06 Hz Resolution Steps
 - ✤ 960 Samples/Sec

Emax

Rotor Evaluation Evaluating the FFT Spectrum


Eccentricity
Dynamic
Static
Causes

Warped or bowed rotors

- Cocked end bells
- Misalignment

Emax

- Looks for static or dynamic eccentricity
- Eccentricity frequency determined by # rotor bars X speed
- Searches for 1st and 3rd of FL sidebands of eccentricity frequency
- 20 db above noise level is cause for concern

EMAX Detailed Report

🗃 Default

File Template Notes View

Report Title:	Detailed Report	Motor ID:	MA1221_PC2102	Frame #:	447
Date:	01/07/2001	Voltage:	480	Stator Slots:	N/A
Submitted By:	Roy Rogers	HP:	200	Rotor Bars:	53
Power Test Date:	8/30/2000 1:57:03 PM	FLA:	227		
Condition Code:	Severe	Manufacturer:	SIEMENS		

%FLA

Fp

Speed

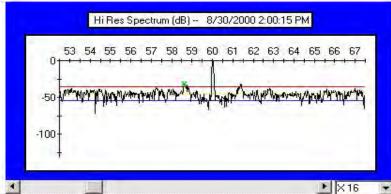
Fp Amp A

Ep Amp B

Fp Amp C

55.31

59.65

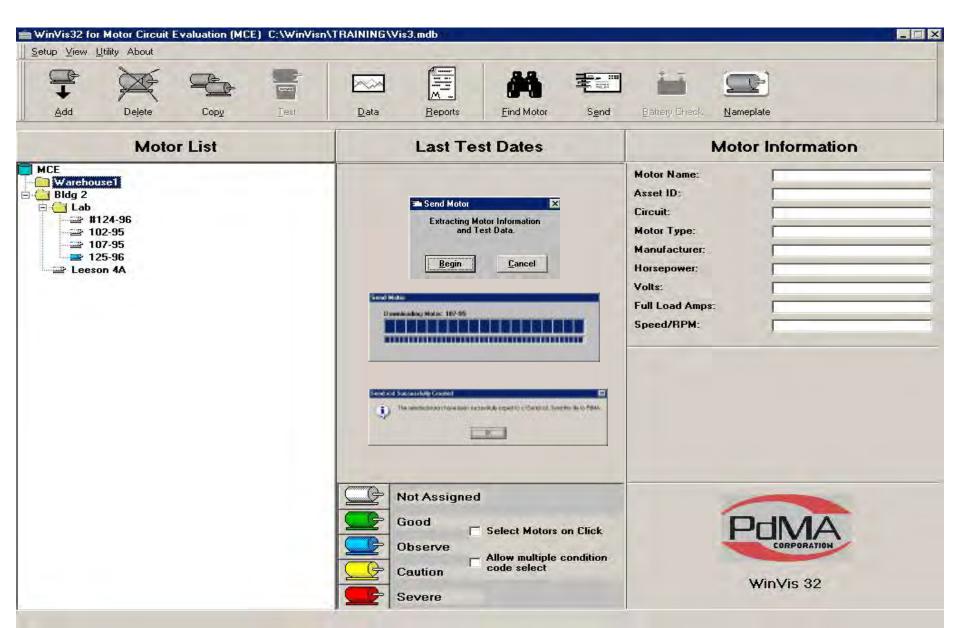

1780.23

-30.00

-30.15

-29.70

	FundRMS	Tot RMS	C.F.	THD		- WAY	WV/NR	89.9	- Pt
Volliege 1-2	484.78	485.10	1.42	0.64	Phase 1	29.40	24.24	38.11	0.77
Vollage 2-3	481.28	481.60	1.42	0.65	Fibauta2	30.04	23.43	38.10	0.79
Voltage 1-3	482.47	482,79	1.41	0.73	Phase 3	28.28	21.52	35.54	06.0
/www.ware	482.84	483,16			Tata	87.73	63.19	111.74	0.79
% Imbaiance	0.40	0.40	IIVF	0.00	Power Sequence	87.73	69.92	111.56	0.79
ANEMA Decaring	100.03	MANEA !!!	Discolog	100.00			Contract of the local distance of the local	A DECK MARKED	-
					2			r	_
Voltage 1	280.03	280.26	1.41	0.74	Contract of the	-			
VSinge 2	279.17	279.35	1.41	0.64	ESCRICY	90.28	6		
Voltage 1	277.08	277.25	1.41	0.71	HP Gupu	108.23			
Average	278.77	278.95			MV Cutera	79.20			
Winterance	18.0	0.61							
		CURRENT	_				SEGMENCE		
Current 1	135.87	135.99	1.47	1.20		EVasit/ver	Negative	28/9	
Cuven 2	196.27	138.38	1.47	1.29	Vol Phase Phase	482.84	2.06	0.00	
Current 3	128.06	128.17	1.49	1.36	Vol Phase-Nexual	278.77	1.19	0.60	
Average	133.40	133.51	1		Carrent	133.39	4.04	1.30	
WWWWW.	4.00	4:00							
W FLA	58.77	58.32							
	-					38	Nige	Million	/vigle
		MPENENC			Zero	2.09		2.09	169.11
					Positive	0.06	135.54	0,07	18.12
	Rea	Magnitude			Negative	0.02	241.69	0.03	253.68



_ 🗆 ×

Fault Zone Analysis Report

ile Report Date	01/07/2001			
Fault Zone	Test Type		Date	Condition Assessment
Power Circuit	Voltage Imbalance Ph-Ph Resistive Imbalance		08/30/00 02/29/00	Good
Power Quality	Voltage THD Ph-Ph Current THD HVF	1.38	08/30/00 08/30/00 08/30/00	Good
Insulation	Stator RTG (Meg) Good CTG (pF) Zero Sequence (%I)	49000.00	02/29/00	Good
	Rotor RTG (Meg) PI CTG (pF)	N/A N/A N/A		
Stator	Imp. Imbalance Inductive Imbalance	4.83	08/30/00 02/29/00	Alarm
Rotor	Fp Amplitude (dB) Inductive Imbalance Resistive Imbalance Inductance Ph-Ph (mH) Resistance Ph-Ph (Ohm)	29.7 N/A N/A N/A N/A		Alarm

Send Feature

Motor Cleared

EMAX testing can help to show that problems in a motor circuit are being caused by:

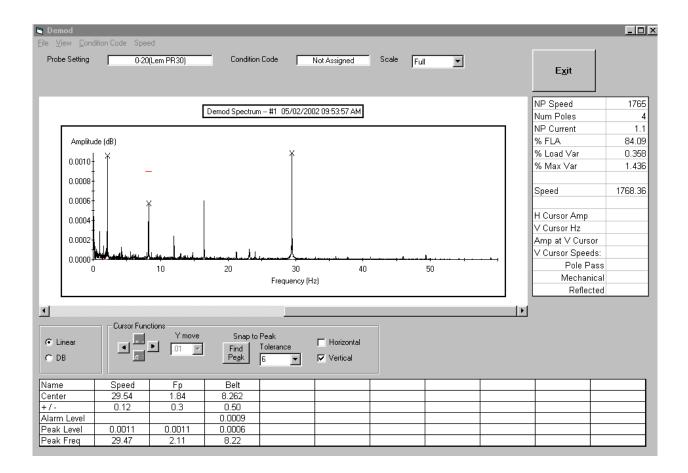
- **7** Poor power quality
- Power circuit faults
- **7** Faulty motor load
- Improper application

Always perform other testing to confirm the problem.

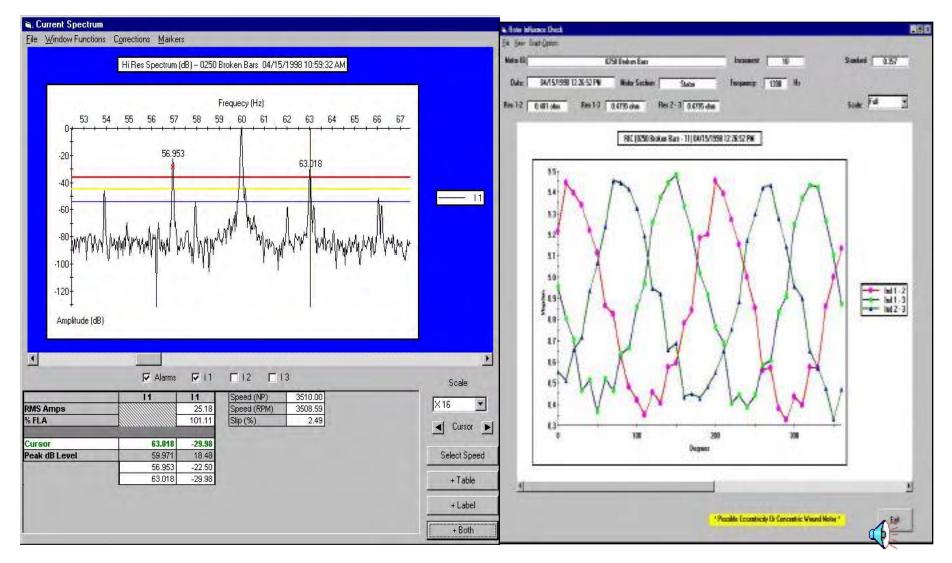
Case Study

- Motor was running at high temperatures
 Vibration levels were above normal but not conclusive
- Dynamic Testing performed from the CTs

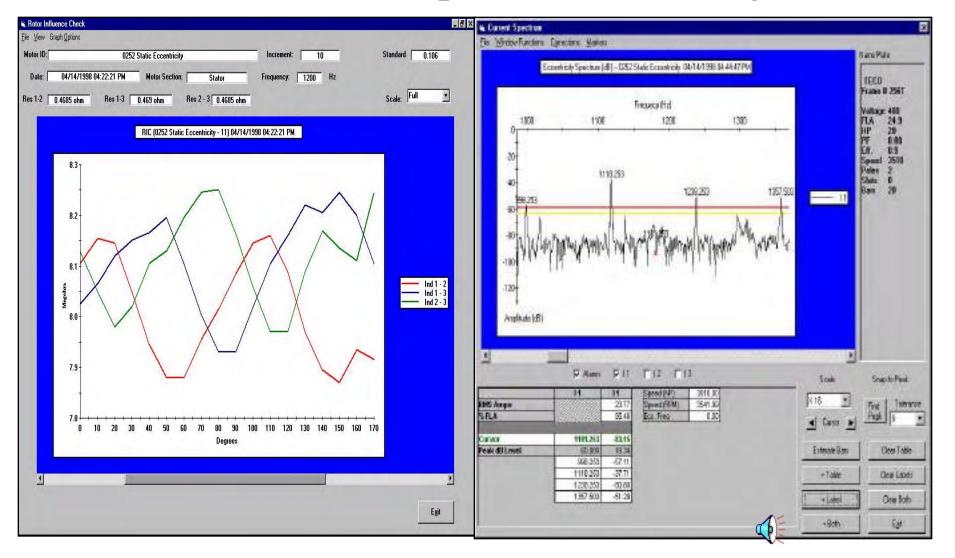
Motor ID:	Vacuum Pump Motor
Circuit:	
Volts:	4160
Horsepower:	200
Manufacturer:	LOUIS ALLIS
Motor Type:	AC Induction
Condition:	Not Assigned


Emax Results

Conclusion


- Broken Rotor bars for vacuum pump motor
 Emax
 - Spectral analysis confirms pole pass sidebands around the fundamental frequency indicating cracked rotor bars

Advanced Spectral Analysis


Broken Rotor Bars

Detected with Two Independent Technologies

Air Gap detected

With Two Independent Technologies

Surge Testing Comparison

	MCE System 3000	Surge Testing
Description	Static testing which looks at the natural inherent characteristics of the motor and its circuit by use of a high frequency, low voltage signal. The presence or development of anomalies will cause a corresponding change in these parameters, permitting diagnostic application or trend analysis.	Static testing which uses a series of high potential capacitive discharges to determine winding and insulation integrity. The amount of potential is 2 X Line voltage + 1000V. The potential is applied to each phase and the return signal monitored for discrepancies.
Fault Zones Analyzed	Power Circuit, Insulation, Stator, Rotor, Air Gap Eccentricity	Insulation, Stator
Portability	17 lbs., Battery powered, no external power source required	40-80 lbs., AC power source required
Advantages	Versatile and totally non-destructive. Tests apply no additional stress to motor or circuit. There is no limit on the number of motors that can be tested consecutively. Instant access to historical data, trending features, graphs and reports. Data interpretation and operational learning curves are very short with the majority of the data objective in nature. The equipment may be used for quality assurance, trend analysis or diagnostics for the entire motor, not just the stator. The high frequency AC signal ensures complete penetration through the entire winding. Able to test specialty motors such as small servos and spindles, rotor fields and resistor banks.	An established technology for stator analysis. The high potential enables the signal to arc across weak areas and expose future faults. A valuable quality assurance tool in the shop atmosphere that can expose stator flaws in new or operational equipment.
Disadvantages	The applied signals may not be significant enough to arc across weak dielectric. The rotor influence check requires the incremental rotation of the shaft in order to confirm rotor or air gap anomalies. The potential applied during the resistance to ground check is limited to 5000V.	Gives little information regarding power circuit, rotor or air gap condition. Very limited trending capability and according to EPRI, is a "go /no-go proof test" that "could be destructive." Concerns exist that a majority of the signal is dropped across the first few turns of the winding in larger motors. This may impose destructive stresses to that portion of the winding while leaving faults closer to the knuckle undetected. Data can be influenced by rotor position, therefore, it is recommended that the rotor be removed when performing tests. The bulkiness and weight of the equipment can be a liability in the field and limitations exist on the number of motors that can be tested consecutively.

Review of Equipment Benefits

Financial Savings

- Reduce unexpected motor failures
- Reduction in motor costs

Unparalleled Support

- Technical Support
- Annual Conference
- Quarterly Newsletter

- User Friendly
 - Multiple technologies
 - Equipment Portability
 - Automatic Analysis
 - Equipment Safety
- Equipment Versatility
 - Plant conditions
 - Applications
 - Motor types
 - ✤ Fault zones